Advanced CAD/CAM Fall 2019

Homework 2

September 21, 2019

1. Consider the following curves:

$$
\begin{aligned}
f(x, y)= & -64 y^{4}+128 y^{3}-96 x^{2} y^{2}+140 x y^{2}-139 y^{2}+96 x^{2} y \\
& -140 x y+75 y-96 x^{4}+276 x^{3}-313 x^{2}+165 x-36=0
\end{aligned}
$$

and

$$
\begin{equation*}
\mathbf{r}(t)=(x(t), y(t))^{T}=\sum_{i=0}^{3} \mathbf{b}_{i} B_{i, 4}(t) \tag{1}
\end{equation*}
$$

where $B_{i, 4}(t)$ denotes the i-th cubic Bernstein polynomial and $\mathbf{b}_{0}=$ $(0.5,0.5)^{T}, \mathbf{b}_{1}=(0.7,0.6)^{T}, \mathbf{b}_{2}=(0.95,0.1)^{T}, \mathbf{b}_{3}=(0.55,0.25)^{T}$.
(a). Compute all turning and singular points of $f(x, y)$ to the accuracy of 10^{-10}, as well as the tangent lines at all these points.
(b). Using the results of (a) as a guide, sketch $f(x, y)$. Clearly indicate the turning and singular points on your sketch.
(c). Compute the intersections of the two curves given above to the accuracy of 10^{-10}. In addition to giving the Cartesian coordinates of the intersection points, also include the parameter values of the points and their multiplicity.

Note

Given an algebraic curve of $f(x, y)=0$, we define turning and singular points as follows:

- The x-turning points are the points which satisfy $f(x, y)=\frac{\partial f(x, y)}{\partial y}=$ 0.
- The y-turning points are those which satisfy $f(x, y)=\frac{\partial f(x, y)}{\partial x}=0$.
- The singular points are those which satisfy $f(x, y)=\frac{\partial f(x, y)}{\partial x}=$ $\frac{\partial f(x, y)}{\partial y}=0$.

2. Let $\mathbf{r}(s)$ be a planar, closed and convex curve (e.g. a circle, an ellipse, etc.) where the arc length s varies in the range $[0, l]$ so that the length of the curve is l. Let

$$
\hat{\mathbf{r}}(s)=\mathbf{r}(s)+d \mathbf{n}(s)
$$

be another curve, where d is a positive distance and $\mathbf{n}(s)$ is the unit normal vector of the curve $\mathbf{r}(s)$ defined by $\mathbf{n}=\mathbf{t} \times \mathbf{e}_{z}$. $\hat{\mathbf{r}}$ is called the interior normal offset at distance d.
a. Show that the total length of the curve $\hat{\mathbf{r}}(s)$ exceeds the total length of the curve $\mathbf{r}(s)$ by $2 \pi d$.
b. Show that the area enclosed between the two curves is given by

$$
A=d(l+\pi d)
$$

c. Show that the curvatures of the two curves are related by

$$
\hat{\kappa}=\frac{\kappa}{1+d \kappa}
$$

where κ is the curvature of $\mathbf{r}(s)$ and $\hat{\kappa}$ is the curvature of the offset curve $\hat{\mathbf{r}}(s)$.
d. Verify your results for questions a to c for a circle of radius R.
3. Make plots of the B-spline basis functions of the following order n (degree $=n-1$) and knot vector T :

- $\mathrm{n}=4, \quad \mathrm{~T}=[0,0,0,0,1,1,1,1]$
- $\mathrm{n}=4, \quad \mathrm{~T}=[0,0,0,0,2,4,4,4,4]$
- $\mathrm{n}=4, \quad \mathrm{~T}=[0,0,0,0,3,3,6,6,6,6]$
- $\mathrm{n}=4, \quad \mathrm{~T}=[0,0,0,0,2,2,2,6,6,6,6]$
- $\mathrm{n}=4, \quad \mathrm{~T}=[0,0,0,0,1,2,3,4,6,7,7,7,7]$
- $\mathrm{n}=3, \quad \mathrm{~T}=[0,0,0,3,6,9,9,9]$
- $\mathrm{n}=2, \quad \mathrm{~T}=[0,0,2,4,4]$

You may use MATLAB or Python for your plots.
4. Given a list of Cartesian points in 3-D space which represent a nonperiodic curve, construct a cubic Bézier curve using least squares approximation of the points. Also, construct a cubic B-spline curve with non-uniform knots using least squares approximation of these points. Include a simple visualization of the results.

